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We studied the magnetoresistance due to a spin spiral by solving the Boltzmann equation. The scattering
rates of conduction electrons are calculated by using the nonperturbative wave function of the conduction
electrons and the nonequilibrium distribution function is obtained by numerically solving the Boltzmann
equation. These enable us to calculate the resistivity of a sufficiently thin spin spiral. A magnetoresistance ratio
of more than 50% is predicted for a spin spiral with high spin polarization ��0.8� and a small period �about
1–2 nm�.
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There is great interest currently in spin-dependent trans-
port phenomena in magnetic domain walls such as the mag-
netoresistance �MR� effect1–5 and spin-transfer torque-driven
magnetization dynamics6–9 because of the potential applica-
tion of these phenomena to spin-electronics devices such as
spin-motive-force memory10 and racetrack memory.11 In
these devices, higher magnetoresistance due to a thin domain
wall is desirable for high-density magnetic recording.

In 1997, Levy and Zhang4 studied the resistivity due to
domain-wall scattering by using the same Hamiltonian that
was used to explain the giant magnetoresistance effect. They
found that the magnetoresistance ratio is proportional to
1 /d2, where d is the thickness of the domain wall, and
showed that the magnetoresistance ratio is between 2% and
11%, which is consistent with the experimental results �5%�
of Ref. 1 where the thickness of the domain wall is about 15
nm.

However, the theory of Levy and Zhang4 cannot be ap-
plied to a sufficiently thin domain wall for two reasons. First,
the scattering rates of the conduction electrons are calculated
by using the perturbative wave function, which is up to the
first order of the dimensionless parameter �. The parameter
�= lJ /d characterizes the nonadiabaticity of the spins of the
conduction electrons with respect to the localized spins,
where lJ=��vF / �4J� is the electrons’ traveling length during
the precession of their spins around the sd-exchange field J.
For a domain wall with ��1, the theory cannot estimate the
amount of the nonadiabaticity correctly, and thus cannot be
applied. Second, since Levy and Zhang applied the diffusion
approximation to the Boltzmann equation, their theory can-
not be applied to the domain wall in the ballistic region
d� lmfp, where lmfp is the mean free path. For conventional
ferromagnetic metals such as Fe, Co, Ni, and their alloys,
both lJ and lmfp are on the order of a few nanometer.12

The thickness of a domain wall is determined by the com-
petition of the exchange coupling between the localized
magnetizations and the magnetic anisotropy and is usually
on the order of 50 nm for conventional ferromagnetic metals.
Recently, however, the production of the domain wall of
Co50Fe50, with a thickness of about 2.5 nm, was achieved by
trapping the domain wall in a current-confined-path �CCP�
geometry,13 and a magnetoresistance ratio of about 7–10 %
was observed. Many studies have examined to understand
the physical properties of the CCP structure and applied that

structure to magnetic devices.14,15 It should also be noted that
recently a spin spiral of ferromagnetic Mn/W�001� with the
rotation period 2d�2.2 nm was created experimentally.16

Spin transport and related phenomenon in such thin magnetic
structures, where the system size d is comparable to or less
than lJ and lmfp, i.e., a few nanometer, will be important in
the field of future spin electronics. To investigate the trans-
port properties of those structures, it is important to develop
the theory of Levy and Zhang to take into account the
amount of the nonadiabaticity correctly and to describe the
transport without the diffusion approximation.

In this Brief Report, we study the dependence of the mag-
netoresistance ratio of a spin spiral on its period �thickness� d
by solving the Boltzmann equation. We extend the theory of
Levy and Zhang4 by using the nonperturbative wave function
of the conduction electrons in the calculation of the scatter-
ing rates and by solving the Boltzmann equation of the non-
equilibrium distribution function numerically. These enable
us to investigate the resistivity due to a spin spiral with
d� lJ , lmfp. We find that the MR ratio is more than 50% for a
spin spiral with high spin polarization ���0.8� and a small
period �d�1–2 nm�. We also find that in the diffusive re-
gion, d� lJ , lmfp, the MR ratio is proportional to 1 /d2, while
in the ballistic region, d� lJ , lmfp, the MR ratio increases with
decreasing d more slowly than it does in the diffusive region.

We consider electron transport in a one-dimensional spin
spiral that lies over −d /2�x�d /2, where d is the period of
the � rotation of the localized spins. We assume that the
spin-dependent transport of the conduction electrons is de-
scribed by the following Hamiltonian:

Ĥ0 = −
�2

2m
�2 − J	̂ · Ŝ�r� , �1�

where J is the sd-exchange coupling constant between the
conduction �s-like� electrons and localized �d-like� spin, 	̂ is
the vector of the Pauli matrices and Ŝ= �0,−sin 
 , cos 
� is
the unit vector along the direction of the localized spin. The
angle 
 is given by 
�x�= �� /d��x+d /2�. On the other hand,
the spin-dependent impurity scattering is described by4

V̂ = �
i

�v − j	̂ · Ŝ�r����r − Ri� , �2�

where Ri is the position of the impurity, and v and j are the
spin-independent and spin-dependent scattering potentials,
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respectively. The dependence of the transport properties on
the direction of the electrons’ spin arises from either the ex-
change energy J or the spin-dependent scattering potential j,
i.e., the spin dependence of the number of the conduction
electrons at Fermi level is due to J, and the spin dependence
of the scattering rate is due to j.

The resistivity of the spin spiral is calculated by solving
the Boltzmann equation of the nonequilibrium distribution
function fs�k� given by

− evx
sE���F − ��k,s�� =� d3k�

�2��3Wkk�
ss �fs�k� − fs�k���

+� d3k�

�2��3Wkk�
s−s �fs�k� − f−s�k��� ,

�3�

where Wkk�
ss� is the scattering rate of the conduction electrons

from the state �k ,s� to the state �k� ,s��, �F is the Fermi
energy, and E is the strength of the applied electric field. The

index s ,s�=
 denotes the eigenstate of Ĥ0 in spin space,
which is given by17

�
�r� = eik·r exp�− i

�x�

2
	̂x	exp�− i

��kx�
2

	̂y	�
. �4�

Here the angle ��kx� and the spinor �
 are given by

��kx�
2

= arctan� kx
�

kJ
2 + 
�kx
��2 + kJ

4	 , �5�

�+ = �1

0
�, �− = �0

1
� , �6�

where 
�=d
 /dx=� /d and kJ=
2mJ /�, respectively. The
factor tan�� /2� characterizes the nonadiabaticity of the spins
of the conduction electrons with respect to the localized
spins and is the most important parameter in our calcula-
tions. It should be noted that this factor is always less than
unity for any period d and momentum kx. For a sufficiently
large period d, tan�� /2�→ �kx
�� / �2kJ

2�= �kx /kF��, and the
wave function Eq. �4� is reduced to the wave function calcu-
lated by Levy and Zhang.4 On the other hand, for a small
period d where �= lJ /d is comparable to or larger than unity,
the wave function Eq. �4� does not equal the wave function

given in Ref. 4. The eigenvalue of Ĥ0 is given by

��k,s� =
�2

2m
�k2 + �
�

2
�2

− s
�kx
��2 + kJ
4	 . �7�

The velocity vx
s is given by vx

s =���k ,s� /�px. The scattering
rates are calculated by using the Fermi golden rule with the
Born approximation,

Wkk�
ss� =

2�

�

Vkk�

ss� 
2����k,s� − ��k�,s��� , �8�

where the matrix elements of the sattering potential Eq. �2�
are calculated by using the wave function Eq. �4� and are
given by


Vkk�
ss 
2 = ci��v − sj�cos

�

2
cos

��

2
+ �v + sj�sin

�

2
sin

��

2
	2

,

�9�


Vkk�
s−s 
2 = ci��− sv + j�cos

�

2
sin

��

2
+ �sv + j�sin

�

2
cos

��

2
	2

,

�10�

respectively, where ci is the impurity concentration. Here, for
simplicity, we denote ��kx� and ��kx�� as � and ��, respec-
tively. In the limit of d→�, the conduction electrons change
the direction of their spins adiabatically, and thus,
tan�� /2�→0 for any momentum kx. In this limit, the spin-
flip scattering rate is zero, i.e., Vkk�

s−s =0, and the spin-
conserved scattering rate, Wkk�

ss � 
Vkk�
ss 
2, is independent of

the momentum kx. On the other hand, in the limit of d→0,
tan�� /2�→1 for the large momentum �, which means that
the amount of nonadiabaticity is maximized for the
conduction electrons with vx

s �vF because the traveling time
through the spin spiral of these electrons, d /vx, is shorter
than the period of the precession of the spins of the conduc-
tion electrons around the exchange field J. In Ref. 4,
Levy and Zhang approximated that cos�� /2�→1 and
sin�� /2�→ tan�� /2�→ �kx /kF��. It should be noted that for a
thin spin spiral where �= lJ /d is comparable to or larger than

unity, the estimation of the scattering rate Wkk�
ss� in our theory

for large momentum kx is smaller than that obtained by Levy
and Zhang because the factor tan�� /2� in our calculation is
always less than unity while the factor �kx /kF�� used in Ref.
4 is larger than unity. Since the resistivity is high for a high
scattering rate, the magnetoresistance obtained in our theory
is lower than that obtained by Levy and Zhang, as shown
below.

To obtain the nonequilibrium distribution function fs�k�
from the Boltzmann equation �3�, we assume that
fs�k�= ��fs�0��k� /���gs�k��−���F−��k ,s��gs�k�, where
fs�0��k� is the distribution function in equilibrium. Then, Eq.
�3� is reduced to

− evx
sE = −

1

�s�kx�
gs�kx� +

m

2��3�
−kF

s

kF
s

dkx�
Vkk�
ss 
2gs�kx��

+
m

2��3�
−kF

−s

kF
−s

dkx�
Vkk�
s−s 
2g−s�kx�� , �11�

where kF
s is given by

kF
s =
kF

2 + �
�

2
�2

+ s
�kF
��2 + kJ
4. �12�

The relaxation time �s�kx� is given by 1 /�s�kx�
=1 /�ss�kx�+1 /�s−s�kx�, where the spin-conserved relaxation
time �ss�kx� and the spin-flip relaxation time �s−s�kx� are
given by

BRIEF REPORTS PHYSICAL REVIEW B 81, 012405 �2010�

012405-2



1

�ss��kx�
=

m

2��3�
−kF

s�

kF
s�

dkx�
Vkk�
ss� 
2. �13�

The distribution function fs�k� is obtained by
numerically solving Eq. �11�.18 The resistivity of the spin
spiral is calculated as �=1 / �	++	−�, where
	s=−�e /E��d3k / �2��3vx

s fs�k� is the conductivity of the
spin-s electrons.

In the calculation of the scattering-in term,
�d3k� / �2��3�Wkk�

ss fs�k��+Wkk�
s−s f−s�k���, in Eq. �11�, Levy

and Zhang4 assumed that the nonequilibrium distribution
function is proportional to the momentum kx. However, we
do not apply this diffusion approximation to the scattering-in
term because we are interested in the resistivity for a spin
spiral with d� lmfp. Figures 1�a� and 1�b� show typical de-
pendences of the distribution function obtained by Eq. �11�,
g+ /eE, on the momentum kx for d=1 and 10 nm, respec-
tively, where the mean free path lmfp is taken to be 5.9 nm.
According to Fig. 1, we can verify that the diffusion approxi-
mation is not applicable to the region � while it is a good
approximation to the region d� lmfp.

Before estimating the resistivity of a spin spiral, we
should emphasize the validity of our calculation. The semi-
classical Boltzmann equation is applicable when the system
is larger than the width of the wave packet of the conduction
electrons, i.e., the Fermi wavelength �F. In our calculation,
this condition equals d��F. For conventional ferromagnetic
metals, the Fermi wavelength is on the order of a few ang-
strom, which is one order of magnitude smaller than lJ and
lmfp.

12 It should also be noted that the derivative of the angle

�x� is assumed to be constant in the derivation of the wave
function Eq. �4�. Thus, our calculation is valid for a spin
spiral where the direction of the localized spin changes lin-
early in space.

Figure 2 shows the dependence of the MR ratio due to a
spin spiral, defined by ��−��0�� /��0�, on its period d. The
values of the parameters we use are as follows. The Fermi
energy �F and the sd-exchange coupling constant J are taken
to be 5.0 and 0.5 eV, respectively. The Fermi wavelength �F
is estimated to be 5.4 Å. The strengths of the impurity scat-
tering, v and j, and the impurity concentration, ci, are esti-
mated by the resistivity ��0� and the spin polarization � of a
bulk ferromagnetic metal. The value of ��0� is taken to be
150 � nm, which is a typical value of the conventional
ferromagnetic metals,19 while the value of � is
taken to be from 0.3 to 0.9. Using these parameters,

lJ=��vF / �4J� is estimated to be 1.4 nm, and the mean free
path lmfp= �lmfp

+ + lmfp
− � /2, where lmfp

s =vF
s �s�0�, vF

s =�kF
s�0� /m,

�s�0�=��3 / �mci�v−sj�2kF
s�0��, and kF

s�0�=
kF
2 +skJ

2, is esti-
mated to be 5.9 nm, which is approximately independent of
the values of �.

As shown in Fig. 2, the MR ratio increases as the period d
decreases. The higher the spin polarization of the bulk � is
the higher the MR ratio is. In the diffusive region
d� lJ , lmfp, the MR ratio is estimated to be 1–20 %. On the
other hand, for a thin spin spiral �d�1–2 nm� with a high
polarization ���0.8–0.9�, an MR ratio of more than 50% is
predicted. The values of the spin polarization � of the con-
ventional ferromagnetic metals such as Fe, Co, Ni, and their
alloys are about 0.5–0.7, for example, �=0.51 for Co, 0.65
for Co91Fe9, and 0.73 for Ni80Fe20.

20,21 The value of � de-
pends on the combination and the composition ratio of the
ferromagnetic metals, and we can expect ferromagnetic met-
als with high spin polarizations. Thus, the prediction of our
calculation for a spin spiral with high spin polarization � and
a small period d� lJ , lmfp will be confirmed experimentally.

The physics behind these results are as follows. The ori-
gin of MR due to a spin spiral is the mixing of the channels
of the spin-up current and spin-down current due to the spin-

dependent scattering potential V̂. The channel mixing in-
creases the scattering probability of the conduction electrons,
and thus the resistivity. The mixing due to the scattering
arises from the nonadiabaticity of the spins of the conduction
electrons, which is characterized by tan���kx� /2�. In the limit
of d→�, the conduction electrons change the direction of
their spins adiabatically, i.e., tan�� /2�→0 for any momen-
tum kx, and the MR ratio tends to be zero. On the other hand,
in the limit of d→0, the amount of nonadiabaticity that is
maximized for the conduction electrons with large momen-
tum kx, i.e., tan�� /2�→1 for kx�kF, and thus the MR ratio,
increase as the period d decreases. In other words, the MR
due to the spin spiral is mainly due to the conduction elec-
trons with large momentum kx. Since the MR arises from the
asymmetry of the transport properties of the spin channels,
the higher the spin polarization � is the higher the MR ratio
is.
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FIG. 1. The dependence of the distribution function, g+ /eE, on
the momentum kx for �a� d=1 nm and �b� d=10 nm, respectively.
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FIG. 2. The dependence of the MR ratio of a spin spiral on its
period d. The solid lines from bottom to top correspond to the MR
ratio with the spin polarizations �=0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9, respectively. The dashed line is the MR ratio estimated by the
theory of Levy and Zhang �Ref. 4� with �=0.5.
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The dashed line in Fig. 2 shows the MR ratio estimated by
the theory of Levy and Zhang with �=0.5 �Ref. 22�;

MR ratio =
4

5
�2� �2

1 − �2��3 −
5
1 − �2

3
� . �14�

By comparing the solid line and the dashed line in Fig. 2, we
find that the MR ratio in the diffusive region, d� lJ , lmfp, is
proportional to 1 /d2, as shown by Levy and Zhang.4 On the
other hand, in the ballistic region, d� lJ , lmfp, the MR ratio
increases more slowly as the period d decreases compared to
the diffusive region. It should be noted that the factor
tan�� /2� is approximated to be �kx /kF�� in Ref. 4, which is
on the first order of 1 /d. However, for a thin spin spiral, the
higher-order terms of 1 /d also contribute to the calculations
of resistivity, and the dependence of the MR ratio on the
period d shifts from 1 /d2. As shown in Fig. 2, the MR ratio
obtained by our theory is smaller than that obtained by Levy
and Zhang. This is due to the fact that the estimated scatter-
ing rate by our calculation is lower than that by Levy and
Zhang, as mentioned above. The smaller the period d is the

larger the difference is in the amount of nonadiabaticity be-
tween our theory and that of Levy and Zhang, i.e., the dif-
ference in the values of tan�� /2� and �kx /kF��. Thus, the
difference in the MR ratio between our theory and theirs
increases as the period d decreases.

In conclusion, we have studied the dependence of magne-
toresistance due to a spin spiral on its period d by solving the
Boltzmann equation. The scattering rate of the conduction
electrons in the spin spiral is calculated by using the nonper-
turbative wave function of the conduction electrons, and the
nonequilibrium distribution function is obtained by numeri-
cally solving the Boltzmann equation. An MR ratio of more
than 50% is predicted for a thin spin spiral �d�1–2 nm�
with high spin polarization ���0.8�. We also find that the
MR ratio in the diffusive region is proportional to 1 /d2,
while in the ballistic region the MR ratio increases more
slowly with decreasing d compared to the diffusive region.
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